Polyakov Action Minimization for Efficient Color Image Processing
نویسندگان
چکیده
The Laplace-Beltrami operator is an extension of the Laplacian from flat domains to curved manifolds. It was proven to be useful for color image processing as it models a meaningful coupling between the color channels. This coupling is naturally expressed in the Beltrami framework in which a color image is regarded as a two dimensional manifold embedded in a hybrid, five-dimensional, spatial-chromatic (x, y, R, G, B) space. The Beltrami filter defined by this framework minimizes the Polyakov action, adopted from high-energy physics, which measures the area of the image manifold. Minimization is usually obtained through a geometric heat equation defined by the Laplace-Beltrami operator. Though efficient simplifications such as the bilateral filter have been proposed for the single channel case, so far, the coupling between the color channel posed a non-trivial obstacle when designing fast Beltrami filters. Here, we propose to use an augmented Lagrangian approach to design an efficient and accurate regularization framework for color image processing by minimizing the Polyakov action. We extend the augmented Lagrangian framework for total variation (TV) image denoising to the more general Polyakov action case for color images, and apply the proposed framework to denoise and deblur color images.
منابع مشابه
Polyakov Action for Efficient Color Image Processing∗
The Laplace-Beltrami operator is an extension of the Laplacian from flat domains to curved manifolds. It was proven to be useful for color image processing as it models a meaningful coupling between the color channels. This coupling is naturally expressed in the Beltrami framework in which a color image is regarded as a two dimensional manifold embedded in a hybrid, five dimensional, spatial-ch...
متن کاملImage Processing via the Beltrami Operator
We present a framework for enhancing images while pre serving either the edge or the orientation dependent texture informa tion present in them We do this by treating images as manifolds in a feature space This geometrical interpretation leads to a natural way for grey level color movies volumetric medical data and color texture im age enhancement Following this we invoke the Polyakov action fr...
متن کاملThe Combinational Use Of Knowledge-Based Methods and Morphological Image Processing in Color Image Face Detection
The human facial recognition is the base for all facial processing systems. In this work a basicmethod is presented for the reduction of detection time in fixed image with different color levels.The proposed method is the simplest approach in face spatial localization, since it doesn’trequire the dynamics of images and information of the color of skin in image background. Inaddition, to do face...
متن کاملFast Dual Minimization of the Vectorial Total Variation Norm and Applications to Color Image Processing
We propose a regularization algorithm for color/vectorial images which is fast, easy to code and mathematically well-posed. More precisely, the regularization model is based on the dual formulation of the vectorial Total Variation (VTV) norm and it may be regarded as the vectorial extension of the dual approach defined by Chambolle in [13] for gray-scale/scalar images. The proposed model offers...
متن کاملComplex Diffusion on Scalar and Vector Valued Image Graphs
Complex diffusion was introduced in the image processing literature as a means to achieve simultaneous denoising and enhancement of scalar valued images. In this paper, we present a novel geometric framework to achieve complex diffusion for color images represented by image graphs. In this framework, we develop a novel variational formulation that involves a modified harmonic map functional and...
متن کامل